GeoEye-1 Geolocation Assessment and Reporting Update

Dr. David Mulawa

JACIE 2011 Boulder, CO

GE-1 Geolocation Update

- The geolocation accuracy performance assessment for GeoEye-1 system during 2010 was better than 4 meters for mono CE90 and stereo CE90/LE90.
- Average relative geolocation CE90 performance of better than 1 meter for points separated by 50 km.
- The geometric calibration of GE-1 was maintained with 4 camera interlock updates during 2010.
- GE-1 Community Sensor Model (CSM) was delivered in 2010.

GE-1 Geolocation Accuracy Test Results

Period	Mo	ono	Stereo						
	# images	CE90 (m)	# pairs	CE90 (m)	LE90 (m)				
2009 Q2-Q4	530	3.6	222	3.4	3.2				
2010	136	3.8	65	3.5	3.5				
2011 Q1	15	3.3	6	3.3	3.8				

- Based on rigorous (physical) model
- Direct positioning
 - No adjustment of imagery
- Typical collection geometry was up to 30 degrees off nadir angle and stereo convergence angle of 45 degrees

GE-1 Absolute Mono Geolocation Accuracy for 2010

CE90 = 3.8 meters

GE-1 Absolute Stereo Geolocation Accuracy for 2010

CE90 = 3.5 meters

$$n = 65$$

$$mean(\Delta \phi) = 0.4 m$$
 $mean(\Delta \lambda) = -0.8 m$

stdev (
$$\Delta \phi$$
) = 1.3 m stdev ($\Delta \lambda$) = 1.5 m

GE-1 Absolute Stereo Geolocation Accuracy for 2010

LE90 = 3.5 meters

$$n = 65$$

$$mean(\Delta h) = 1.4 m$$

stdev (
$$\Delta h$$
) = 1.8 m

GE-1 Geolocation Assessment

GE-1 Absolute Mono Geolocation Accuracy for Q1 2011

CE90 = 3.3 meters

GE-1 Absolute Stereo Geolocation Accuracy for Q1 2011

max radial error = 3.3 meters

Max error reported due to small sample size

GE-1 Geolocation Assessment

GE-1 Absolute Stereo Geolocation Accuracy for Q1 2011

max elev error = 3.8 meters

Max error reported due to small sample size

$$n = 6$$

$$mean(\Delta h) = -0.3m$$

st dev $(\Delta h) = 2.6 m$

radial horizontal error (m)

GE-1 Relative Geolocation Accuracy Test Results for 2010

100115_phoenix_1st	0.3	0.5	0.8	1.1	1.1	1.0	1.0	1.0	1.0	1.1	1.1	1.1	1.2	1.3	1.4
100115_phoenix_2nd		0.2	0.4	0.6	0.8	0.9	0.9	0.9	1.0	1.0	1.1	1.1	1.0	1.0	1.0
100121_perth_1st		0.3	0.5	0.5	0.5										
100121_perth_2nd	0.3	0.3	0.4	0.4	0.5										
100129_perth_1st	0.3	0.3	0.4	0.4	0.4										
100129_perth_2nd	0.2	0.2	0.3	0.4	0.4										
100131_perth_1st		0.3	0.5	0.6	0.7	0.9									
100201_perth_1st		0.2	0.2	0.4	0.3										
100209_perth_1st	0.3	0.3	0.3	0.3	0.3										
100209_perth_2nd	0.2	0.3	0.4	0.4	0.4										
100212_perth_1st	0.2	0.3	0.3	0.3	0.3										
100212_perth_2nd	0.2	0.2	0.3	0.3	0.3										
100903_perth_1st	0.2	0.2	0.3	0.3	0.3										
100903_perth_2nd	0.3	0.6	0.9	1.1	1.5										
100906_perth_1st	0.2	0.3	0.3	0.4	0.4										
100906_perth_2nd	0.3	0.5	0.7	0.9	1.0										
100928_phoenix_1st	0.2	0.2	0.3	0.4	0.4	0.4	0.4	0.5	0.5	0.6	0.6				
101008_phoenix_1st		0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.6	0.5				
101130_perth_1st	0.3	0.3	0.3	0.3	0.3										
101130_perth_2nd	0.3	0.3	0.3	0.3	0.3										
101210_phoenix_1st	0.2	0.3	0.4	0.6	0.7	0.8	0.8	0.8	0.8	0.8	0.8				
101210_phoenix_2nd	0.2	0.4	0.6	0.9	1.1	1.2	1.2	1.2	1.1	1.1					
Mean Relative CE90 (m)	0.2	0.3	0.4	0.5	0.6	0.8	0.8	0.9	0.9	0.9		1.1	1.1	1.1	1.2
Separation Distance	0km				25km				50km						

CE90 = 1 meter is 0.15 arcsec (1σ) per axis at GE-1 orbit

GE-1 Relative Geolocation Accuracy Histogram for 2010

Phoenix Geometric Calibration Range

- Aerial photos with 60% endlap and 60% sidelap
- Geodetic control survey
- Block triangulation and control point generation
- Image correlation is used to match aerial image points to satellite

Geolocation Error Times Series

- The horizontal error for each satellite image point is computed
- A median moving boxcar filter is used to determine the geolocation error for a given time (image line)
 - This reduces the matching error.
- Time series of the geolocation error are useful for visualization
 - Shown here as latitude error and longitude error times series

GE-1 Geolocation Assessment

Point Pairs and Distance Bins

- For every point pair in the satellite image
 - Compute the distance for the point pair
 - Compute the relative radial geolocation error for the point pair
 - Add the relative geolocation error to the appropriate distance bin
- Shown here is the number of point pairs in a given distance bin

JACIE 2011

GE-1 Geolocation Assessment

Relative Geolocation Error by Point Pair Separation Distance

- For each distance bin
 - Sort each distance to establish the rank order for the relative radial distance
 - Determine the 90% of the rank order for the relative CE90
- Shown are the CE90 plotted against the separation distance bin

Removing Linear Trend from Relative Geolocation Error

- Some images contain linear trends. Linear trends may be estimated in block triangulation with other images.
- Removing the linear trend in the previous example shows the residual relative geolocation error. Shown below.
- In this example, the observed residual relative error is 0.3 pixel (1σ each axis)

GE-1 Geometric Calibration Update

- The GE-1 camera interlock angle calibration was updated 4 times during 2010: Feb, May, Aug and Nov
- The GE-1 Field Angle Map (FAM) did not require a calibration table update during 2010.
 - The imagery collected for relative geolocation accuracy assessment is also used to check the FAM

GE-1 Community Sensor Model

- "The Community Sensor Model (CSM) Program will provide Government and Industry with the capability to create and maintain a standard program for developing, testing, and evaluating a collection of current and future sensor models. The models support Sensor Exploitation Tools (SETs) and other application tools that require a precise understanding of the image (data) and ground coordinate relationships. The CSMs are dynamically linked (or loaded) libraries that do not require re-compilation of the SET. Models may be added or removed from the SET without impact on the SET or other models. This capability will be used to accurately map a pixel (e.g., target location) on an image to a geo-referenced coordinate and provide rigorous error estimates."
 - Community Senor Model Technical Requirements Document Introduction
- The GE-1 Community Sensor Model plug-in that supports photogrammetric functions such as:
 - Ingesting GE-1 metadata and ancillary data
 - Image to ground and ground to image projections
 - Numerical evaluations of partial derivatives with respect to image and sensor parameters
 - Error propagation through projection model
- Executable was built for: Red Hat Linux, Windows XP, Solaris 10
- The GE-1 CSM plug-in was delivered in July 2010 to NGA
- A GE-2 CSM is planned

Summary

- The GE-1 system continues produce very good geolocation accuracy performance
- The GE-1 system performance was maintained with periodic geometric calibration updates
- GE-1 Community Sensor Model plug-in has been built and tested

